题目内容

12.α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,m?α,那么m∥β.
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题的个数为(  )
A.1B.2C.3D.4

分析 对①,运用长方体模型,找出符合条件的直线和平面,即可判断;
对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;
对③,运用面面平行的性质定理,即可判断;
对④,由平行的传递性及线面角的定义,即可判断④.

解答 解:对于命题①,可运用长方体举反例证明其错误:
如图,不妨设AA′为直线m,CD为直线n,ABCD所在的平面为α,ABC′D′所在的平面为β,显然这些直线和平面满足题目条件,但α⊥β不成立;
命题②正确,证明如下:设过直线n的某平面与平面α相交于直线l,则l∥n,由m⊥α知m⊥l,从而m⊥n,结论正确;
由平面与平面平行的定义知命题如果α∥β,m?α,那么m∥β.③正确;
由平行的传递性及线面角的定义知命题:如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等,④正确.
故选:C.

点评 本题考查命题的真假判断,考查空间线面、面面平行和垂直的位置关系,注意运用判定定理和性质定理,考查推理能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网