题目内容

17.已知函数f(x)=2sin(-2x+θ)(0<θ<π),$f({\frac{π}{4}})=-1$,则f(x)的一个单调递减区间是(  )
A.$({-\frac{5π}{12},\frac{π}{12}})$B.$({\frac{π}{12},\frac{7π}{12}})$C.$({-\frac{π}{6},\frac{π}{3}})$D.$({-\frac{π}{12},\frac{5π}{12}})$

分析 根据$f({\frac{π}{4}})=-1$,求出θ,可得f(x)的解析式,化简后,根据正弦函数的性质可得单调递减区间.

解答 解:函数f(x)=2sin(-2x+θ)(0<θ<π),
∵$f({\frac{π}{4}})=-1$,即2sin(-$\frac{π}{2}$+θ)=-2cosθ=-1,可得cosθ=$\frac{1}{2}$,
∵0<θ<π,
∴θ=$\frac{π}{3}$,
那么f(x)═2sin(-2x+$\frac{π}{3}$)=-2sin(2x-$\frac{π}{3}$),
由$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{3}$$≤\frac{π}{2}+2kπ$,
得:$-\frac{π}{12}+kπ$≤x≤$\frac{5π}{12}+kπ$,k∈Z.
因此f(x)的一个单调递减区间[$-\frac{π}{12}$,$\frac{5π}{12}$],
故选D.

点评 本题主要考查对三角函数的计算能力和三角函数的图象和性质的运用.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网