题目内容
函数y=
的定义域为( )
| 1-lnx |
| A、(0,e] |
| B、(-∞,e] |
| C、(0,10] |
| D、(-∞,10] |
考点:函数的定义域及其求法
专题:
分析:根据函数的解析式,列出使解析式有意义的不等式,求出解集即可.
解答:
解:∵函数y=
,
∴1-lnx≥0,
即lnx≤1;
解得0<x≤e,
∴函数y的定义域为(0,e].
故选:A.
| 1-lnx |
∴1-lnx≥0,
即lnx≤1;
解得0<x≤e,
∴函数y的定义域为(0,e].
故选:A.
点评:本题考查了求函数定义域的问题,解题时应根据函数的解析式,求出使解析式有意义的不等式的解集,是基础题.
练习册系列答案
相关题目
已知向量
=(1,-1),
=(2,m),若
⊥
,则m=( )
| a |
| b |
| a |
| b |
| A、-2 | ||
B、-
| ||
C、
| ||
| D、2 |
集合{1,2,3}的真子集的个数有( )
| A、8个 | B、7个 |
| C、6 个 | D、5个 |
函数y=sin2x的图象经过适当变换可以得到y=cos2x的图象,则这种变换可以是( )
A、沿x轴向右平移
| ||
B、沿x轴向左平移
| ||
C、沿x轴向左平移
| ||
D、沿x轴向右平移
|