题目内容

设a1,d为实数,首项为a1,公差为d的等差数{an}的前n项和为Sn,满足S5S6+15=0.
(Ⅰ)当S5=5时,若bn=|an|,求bn前n项和Tn
(Ⅱ)求d的取值范围.
考点:数列的求和
专题:等差数列与等比数列
分析:(I)根据附加条件,先求得s6再求得a6分别用a1和d表示,再解关于a1和d的方程组.
(II)所求问题是d的范围,所以用“a1,d”法.
解答: 解:(Ⅰ)由S5=5和S5S6+15=0得S6=-3.∴a6=S6-S5=-8.(1分)∴
S5=5a1+10d=5
a6=a1+5d=-8

解得a1=7,d=-3,∴an=10-3n.
由10-3n≥0得n≤
10
3

∴当n≤3时,Tn=b1+b2+…+bn=|a1|+|a2|+…+|an|=-
3
2
n2+
17
2
n

当n≥4时,Tn=b1+b2+…+bn=|a1|+|a2|+…+|an|=
3
2
n2-
17
2
n+24

综上Tn=
-
3
2
n2+
17
2
n
n≤3
3
2
n2-
17
2
n+24
n≥4

(Ⅱ)因为S5S6+15=0,
所以(5a1+10d)(6a1+15d)+15=0,
整理得
a
2
1
+
9
2
a1d+5d2+
1
2
=0,
(a1+
9d
4
)2
=
d2
16
-
1
2

(a1+
9d
4
)2
≥0,∴
d2
16
-
1
2
≥0,
解得d≤-2
2
或d≥2
2

∴d的取值范围为(-∞,-2
2
]∪[2
2
,+∞).
点评:本题主要考查等差数列概念、求和公式通项公式等基础知识,同时考查运算求解能力及分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网