题目内容

14.已知F为抛物线C:y2=8x的焦点,点E在点C的准线上,且在x轴上方,线段EF的垂直平分线于C的准线交于点M(-2,-3),与C交于点P,则△PEF的面积为(  )
A.$\frac{5}{2}$B.5C.10D.$\frac{5}{4}$

分析 由抛物线方程求出焦点坐标,设出E的坐标(-2,m),利用EF与PM垂直求得m的值,进而可求直线PM方程,与抛物线方程联立可求出点P坐标,利用两点间距离公式及三角形的面积公式即可求得△PEF的面积.

解答 解:依题意,F(2,0)、准线方程为:x=-2,
设E(-2,m)(m>0),则EF中点为G(0,$\frac{m}{2}$),kEF=$\frac{m-\frac{m}{2}}{-2-0}$=-$\frac{m}{4}$,
又∵M(-2,-3),PM⊥EF,
∴-$\frac{m}{4}$•$\frac{\frac{m}{2}+3}{0+2}$=-1,即m=2或m=-8(舍),
∴G(0,1),直线GM的方程为:2x-y+1=0,
联立直线GM与抛物线方程,化简得:y2-4y+4=0,
解得:y=2,P($\frac{1}{2}$,2),
S△PEF=$\frac{1}{2}$|EF||PG|
=|GF||PG|
=$\sqrt{{2}^{2}+{1}^{2}}$•$\sqrt{\frac{1}{{2}^{2}}+{(2-1)}^{2}}$
=$\frac{5}{2}$,
故选:A.

点评 本题考查了抛物线的简单性质,考查了抛物线的应用,平面解析式的基础知识.考查了考生的基础知识的综合运用和知识迁移的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网