题目内容
已知函数f(x)=
,数列{an}满足a1=1,an+1=f(an).
(1)求证:数列{
}是等差数列;
(2)设bn=anan+1,记数列{bn}的前n项和为sn,求证:
≤sn<1.
| x |
| x+1 |
(1)求证:数列{
| 1 |
| an |
(2)设bn=anan+1,记数列{bn}的前n项和为sn,求证:
| 1 |
| 2 |
考点:数列与函数的综合
专题:综合题,等差数列与等比数列
分析:(1)构造等差数列求解.
(2)利用裂项法,放缩求解,结合函数单调性.
(2)利用裂项法,放缩求解,结合函数单调性.
解答:
解;(1)∵an+1=f(an)=
,
∴
=1+
,
即
-
=1,又
=1
∴数列{
}是以1为首项,以1为公差的等差数列.
(2)∵(1)得
=1+(n-1)×1=n,∴an=
∵bn=anan+1,∴bn=
=
-
Sn=1-
+
-
+
-
+…+
-
=1-
<1
又知{Sn}为递增数列,∴Sn≥S1=b1=
=
∴
≤Sn<1
| an |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
即
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∴数列{
| 1 |
| an |
(2)∵(1)得
| 1 |
| an |
| 1 |
| n |
∵bn=anan+1,∴bn=
| 1 |
| n×(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
又知{Sn}为递增数列,∴Sn≥S1=b1=
| 1 |
| 1×2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
点评:本题考察了等差数列的性质,裂项求和,放缩的技巧,要求能力较强.
练习册系列答案
相关题目