题目内容

15.设复数z满足z(l+i)=3-i,则|$\overline{z}$|等于(  )
A.$\sqrt{5}$B.5C.1-2iD.1+2i

分析 把已知等式变形,再由复数代数形式的乘除运算化简复数z,求出$\overline{z}$,再由复数求模公式计算得答案.

解答 解:由z(l+i)=3-i,
得$z=\frac{3-i}{1+i}=\frac{(3-i)(1-i)}{(1+i)(1-i)}=\frac{2-4i}{2}=1-2i$.
∴$\overline{z}=1+2i$.
∴|$\overline{z}$|=$\sqrt{1+{2}^{2}}=\sqrt{5}$.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网