题目内容

10.在三角形ABC中,角A,B,C所对边分别为a,b,c,满足(2b-c)cosA=acosC.
(1)求角A;
(2)若$a=\sqrt{13}$,b+c=5,求三角形ABC的面积.

分析 (Ⅰ)(2b-c)cosA=acosC,由正弦定理得:(2sinB-sinC)cosA=sinAcosC,再利用和差公式、三角形内角和定理、诱导公式可得cosA=$\frac{1}{2}$,A∈(0,π).解得A.
(2)由余弦定理得a2=b2+c2-2bccosA,把$a=\sqrt{13}$,b+c=5,代入可得bc,可得三角形ABC的面积S=$\frac{1}{2}bc$sinA.

解答 解:(Ⅰ)在三角形ABC中,∵(2b-c)cosA=acosC,
由正弦定理得:(2sinB-sinC)cosA=sinAcosC,
化为:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,
sinB≠0,解得cosA=$\frac{1}{2}$.A∈(0,π).
∴A=$\frac{π}{3}$.
(2)由余弦定理得a2=b2+c2-2bccosA,
∵$a=\sqrt{13}$,b+c=5,
∴13=(b+c)2-3cb=52-3bc,
化为bc=4,
所以三角形ABC的面积S=$\frac{1}{2}bc$sinA=$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

点评 本题考查了正弦定理余弦定理、和差公式、三角形内角和定理、诱导公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网