题目内容

17.如图是市儿童乐园里一块平行四边形草地ABCD,乐园管理处准备过线段AB上一点E设计一条直线EF(点F在边BC或CD上,不计路的宽度),将该草地分为面积之比为2:1的左、右两部分,分别种植不同的花卉.经测量得AB=18m,BC=10m,∠ABC=120°.设EB=x,EF=y(单位:m).
(1)当点F与C重合时,试确定点E的位置;
(2)求y关于x的函数关系式;
(3)请确定点E、F的位置,使直路EF长度最短.

分析 (1)根据面积公式列方程求出BE;
(2)对F的位置进行讨论,利用余弦定理求出y关于x的解析式;
(3)分两种情况求出y的最小值,从而得出y的最小值,得出E,F的位置.

解答 解:(1)∵S△BCE=$\frac{1}{2}×BE×BC×sin∠ABC$,SABCD=2×$\frac{1}{2}×AB×BC×sin∠ABC$,
∴$\frac{{S}_{△BCE}}{{S}_{ABCD}}$=$\frac{BE}{2AB}$=$\frac{1}{3}$,
∴BE=$\frac{2}{3}$AB=12.即E为AB靠近A的三点分点.
(2)SABCD=18×10×sin120°=90$\sqrt{3}$,
当0≤x<12时,F在CD上,
∴SEBCF=$\frac{1}{2}$(x+CF)BCsin60°=$\frac{1}{3}×$90$\sqrt{3}$,解得CF=12-x,
∴y=$\sqrt{1{0}^{2}+(12-2x)^{2}-2×10×(12-2x)×cos60°}$=2$\sqrt{{x}^{2}-7x+31}$,
当12≤x≤18时,F在BC上,
∴S△BEF=$\frac{1}{2}•x•BF•sin120°$=$\frac{1}{3}×90\sqrt{3}$,解得BF=$\frac{120}{x}$,
∴y=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}-2x•\frac{120}{x}•cos120°}$=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120}$,
综上,y=$\left\{\begin{array}{l}{2\sqrt{{x}^{2}-7x+31},0≤x<12}\\{\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120},12≤x≤18}\end{array}\right.$.
(3)当0≤x<12时,y=2$\sqrt{{x}^{2}-7x+31}$=2$\sqrt{(x-\frac{7}{2})^{2}+\frac{75}{4}}$≥5$\sqrt{3}$,
当12≤x≤18时,y=$\sqrt{{x}^{2}+\frac{14400}{{x}^{2}}+120}$>$\sqrt{360}$>5$\sqrt{3}$,
∴当x=$\frac{7}{2}$,CF=$\frac{17}{2}$时,直线EF最短,最短距离为5$\sqrt{3}$.

点评 本题考查了函数在实际问题中的应用及基本不等式与二次函数的性质应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网