题目内容

6.已知数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),则数列{an}的通项公式为(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n-1}$C.${a_n}=\frac{n}{n+1}$D.${a_n}=\frac{1}{n+1}$

分析 数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,利用等差数列的通项公式即可得出.

解答 解:数列{an}满足:a1=1,$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+1}}{a_n}$(n∈N*),
∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,公差为1,首项为1.
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n.
则数列{an}的通项公式为:an=$\frac{1}{n}$.
故选:A.

点评 本题考查了等差数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网