题目内容
8.设函数f(x)=ax-2a+ex(1-x),其中a<1,若存在唯一整数x0,使得f(x0)>0,则a的取值范围是( )| A. | $(\frac{2}{3e},1)$ | B. | $[\frac{2}{3e},\frac{1}{2})$ | C. | $(-\frac{2}{3e},1)$ | D. | $[-\frac{2}{3e},\frac{1}{2})$ |
分析 设g(x)=ex(x-1),y=ax-2a,则存在唯一的整数x0,使得g(x0)在直线y=ax-2a的下方,由此利用导数性质能求出a的取值范围.
解答
解:函数f(x)=ax-2a+ex(1-x),其中a<1,
设g(x)=ex(x-1),y=ax-2a,
∵存在唯一的整数x0,使得f(x0)>0,
∴存在唯一的整数x0,使得g(x0)在直线y=ax-2a的下方,
∵g′(x)=xex,
∴当x<0时,g′(x)<0,
∴当x=0时,[g(x)]min=g(0)=-1.
当x=0时,g(0)=-1,g(1)=e>0,
直线y=ax-2a恒过(2,0),斜率为a,故-a>g(0)=-1,
且g(-1)=-2e-1≥-a-2a,解得a≥$\frac{2}{3e}$.-1>-2a,解得a$<\frac{1}{2}$
∴a的取值范围是[$\frac{2}{3e}$,$\frac{1}{2}$).
故选:B.
点评 本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题.
练习册系列答案
相关题目
9.近年来,食品安全越来越被广大民众所关注,有机蔬菜因其无污染、富营养和高质量等品质而受到大众喜爱.为了解某地区某种有机蔬菜的年产量x(单位:吨)对价格y(单位:千元/吨)和年利润z的影响,对近五年该有机蔬菜的年产量和价格统计如表:
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)假设该有机蔬菜的成本为每吨2千元,并且可以全部卖出,预测年产量为多少吨时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| x | 3 | 1 | 2 | 4 | 5 |
| y | 5.5 | 6.5 | 6 | 3.7 | 2.3 |
(2)假设该有机蔬菜的成本为每吨2千元,并且可以全部卖出,预测年产量为多少吨时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
13.若抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为C,过点F的直线与抛物线相交于A、B两点,若|AF|=3,|BF|=1,则AC的长度为( )
| A. | $\sqrt{19}$ | B. | 2$\sqrt{5}$ | C. | $\frac{3}{2}$$\sqrt{7}$ | D. | 3$\sqrt{2}$ |
17.已知函数f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{{x}^{2}-3x+2,x≥0}\end{array}\right.$,函数g(x)=f(x)-a恰有三个不同的零点,则实数a的取值范围为( )
| A. | (-∞,-$\frac{1}{4}$] | B. | (-$\frac{1}{4}$,2) | C. | [2,+∞) | D. | [0,2) |
18.已知实数a满足-3<a<4,函数f(x)=lg(x2+ax+1)的值域为R的概率为P1,定义域为R的概率为P2,则( )
| A. | P1>P2 | B. | P1=P2 | ||
| C. | P1<P2 | D. | P1与P2的大小不确定 |