题目内容
20.已知函数f(x)=log2(x-m),其中m∈R.(1)若函数f(x)在区间(2,3)内有一个零点,求m的取值范围;
(2)若函数f(x)在区间[1,t](t>1)上的最大值与最小值之差为2,且f(t)>0,求m的取值范围.
分析 (1)根据对数函数的性质求出m=x-1,关于x的范围,求出m的范围即可;
(2)根据函数的单调性求出f(t)最大,f(1)最小,作差求出t=4-3m,得到关于m的不等式,解出即可.
解答 解:(1)由log2(x-m)=0,得m=x-1,
由2<x<3得:1<x-1<2,
故m的范围是(1,2);
(2)f(x)在[1,t](t>1)递增,
∴f(t)-f(1)=2,
∴log2(t-m)-log2(1-m)=2,
∴log2$\frac{t-m}{1-m}$=log24,
∴t=4-3m,
由f(t)>0,得t>m+1,
∴4-3m>m+1,
解得:m<$\frac{3}{4}$.
点评 本题考查了对数函数的性质,考查函数的单调性、最值问题,考查转化思想,是一道中档题.
练习册系列答案
相关题目
8.设函数f(x)=ax-2a+ex(1-x),其中a<1,若存在唯一整数x0,使得f(x0)>0,则a的取值范围是( )
| A. | $(\frac{2}{3e},1)$ | B. | $[\frac{2}{3e},\frac{1}{2})$ | C. | $(-\frac{2}{3e},1)$ | D. | $[-\frac{2}{3e},\frac{1}{2})$ |
5.
如图所示将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2016}{a}_{2017}}$=( )
| A. | $\frac{2016}{2017}$ | B. | $\frac{2017}{2016}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{2016}{2015}$ |
10.若f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a+3)x+b在R上不是单调函数,则实数a的取值范围是( )
| A. | -2≤a≤6 | B. | a≤-2或a≥6 | C. | -2<a<6 | D. | a<-2或a>6 |