题目内容
7.已知以F为焦点的抛物线y2=4x上的两点A,B满足$\overrightarrow{AF}$=2$\overrightarrow{FB}$,则弦AB中点到抛物线准线的距离为$\frac{9}{4}$.分析 设BF=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.
解答
解:设BF=m,由抛物线的定义知
AA1=2m,BB1=m
∴△ABC中,AC=m,AB=3m,
∴kAB=2$\sqrt{2}$
直线AB方程为y=2$\sqrt{2}$(x-1)
与抛物线方程联立消y得2x2-5x+2=0
所以AB中点到准线距离为$\frac{{x}_{1}+{x}_{2}}{2}$+1=$\frac{9}{4}$.
故答案为:$\frac{9}{4}$.
点评 本题主要考查了抛物线的简单性质.考查了直线与抛物线的关系及焦点弦的问题.常需要利用抛物线的定义来解决.
练习册系列答案
相关题目
17.将函数y=sin(x+$\frac{π}{6}$)(x∈R)的图象上所有点的纵坐标不变横坐标缩小到原来的$\frac{1}{2}$,再把图象上各点向左平移$\frac{π}{4}$个单位长度,则所得的图象的解析式为( )
| A. | y=sin(2x+$\frac{5}{6}π$) | B. | y=sin($\frac{1}{2}$x+$\frac{1}{6}$π) | C. | y=sin(2x+$\frac{2}{3}$π) | D. | y=sin($\frac{1}{2}$x+$\frac{5}{12}$π) |
15.若函数f(x)=sin(2x+φ)(0<φ<π)的图象关于直线x=$\frac{π}{6}$对称,则φ的值为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
2.若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},则A∩∁UB=( )
| A. | {x|1<x<2} | B. | {x|0<x≤1} | C. | {x|0<x<1} | D. | {x|1≤x<2} |
12.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为( )
| A. | (-3$\sqrt{2}$,3$\sqrt{2}$) | B. | (-∞,-3$\sqrt{2}$)∪(3$\sqrt{2}$,+∞) | C. | (-2$\sqrt{2}$,2$\sqrt{2}$) | D. | [-3$\sqrt{2}$,3$\sqrt{2}$] |
19.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点恰有3个,则实数a的值为( )
| A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | -$\sqrt{2}$或$\sqrt{2}$ | D. | -2$\sqrt{2}$或2$\sqrt{2}$ |
17.已知集合A={x|-1≤x≤3},B={x|2x>2},则A∩B=( )
| A. | {x|-1<x<3} | B. | {x|1<x≤3} | C. | {x|-1≤x<2} | D. | {x|x>2} |