题目内容

设a,b,c均为正数,且a+b+c=1,证明
a2
a+b
+
b2
b+c
+
c2
c+a
1
2
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:a+b+c=1,所以
a2
a+b
+
b2
b+c
+
c2
c+a
=
1
2
a2
a+b
+
b2
b+c
+
c2
c+a
)(a+b+b+c+c+a),利用基本不等式,即可证明结论.
解答: 证明:∵a+b+c=1,
a2
a+b
+
b2
b+c
+
c2
c+a
=
1
2
a2
a+b
+
b2
b+c
+
c2
c+a
)(a+b+b+c+c+a)
=
1
2
[a2+b2+c2+
a2(b+c)
a+b
+
a2(c+a)
a+b
+
b2(a+b)
b+c
+
b2(c+a)
b+c
+
c2(a+b)
c+a
+
c2(b+c)
c+a
]
1
2
(a2+b2+c2+2ab+2bc+2ac)=
1
2
(a+b+c)2=
1
2

当且仅当a=b=c时,等号成立.
点评:本题考查不等式的证明,考查基本不等式的运用,掌握基本不等式的使用条件是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网