题目内容

9.直线l:x+4y=2与圆C:x2+y2=1交于A、B两点,O为坐标原点,若直线OA、OB的倾斜角分别为α、β,则cosα+cosβ=(  )
A.$\frac{18}{17}$B.$-\frac{12}{17}$C.$-\frac{4}{17}$D.$\frac{4}{17}$

分析 设A(x1,y1),B(x2,y2),由三角函数的定义得:cosα+cosβ=x1+x2,由此利用韦达定理能求出cosα+cosβ的值.

解答 解:设A(x1,y1),B(x2,y2),
由三角函数的定义得:cosα+cosβ=x1+x2
由$\left\{\begin{array}{l}x+4y=2\\{x^2}+{y^2}=1.\end{array}\right.$,消去y得:17x2-4x-12=0
则${x_1}+{x_2}=\frac{4}{17}$,
即$cosα+cosβ=\frac{4}{17}$.
故选:D.

点评 本题考查两个角的余弦值之和的求法,是基础题,解题时要认真审题,注意韦达定理和三角函数定义的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网