题目内容

4.设D为△ABC所在平面内一点,且$\overrightarrow{BC}=3\overrightarrow{BD}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$B.$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$C.$\frac{4}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$D.$\frac{2}{3}\overrightarrow{AB}+\frac{5}{3}\overrightarrow{AC}$

分析 根据向量的三角形法则进行转化求解即可.

解答 解:∵$\overrightarrow{BC}=3\overrightarrow{BD}$
∴$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
则$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$,
故选:A

点评 本题主要考查向量的分解,根据向量三角形法则进行转化是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网