题目内容

14.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(Ⅰ)证明:平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,求CD与平面PAB所成角的余弦值.

分析 (Ⅰ)证明:OC⊥平面PAD,即可证明平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,点O作OE⊥PA于E,连结BE,则OE⊥平面PAB,∠OBE为CD与平面PAB所成的角,即可求CD与平面PAB所成角的余弦值.

解答 (Ⅰ)证明:在四边形OABC中,
∵AO∥BC,AO=BC,AB⊥AD,
∴四边形OABC是正方形,得OC⊥AD,-----------------------(2分)
在△POC中,∵PO2+OC2=PC2,∴OC⊥PO,-------(4分)
又PO∩AD=O,∴OC⊥平面PAD,
又OC?平面POC,∴平面POC⊥平面PAD;-------------(6分)
(Ⅱ)解:连结OB,
∵OD∥BC,且OD=BC∴BCDO为平行四边形,∴OB∥CD,----------------------------(7分)
由(Ⅰ)知OC⊥平面PAD,∴AB⊥平面PAD,
∵AB?平面PAB,∴平面PAB⊥平面PAD,----------------------------------------------------(8分)
过点O作OE⊥PA于E,连结BE,则OE⊥平面PAB,
∴∠OBE为CD与平面PAB所成的角,----------------------(10分)
在Rt△OEB中,∵$OE=\frac{PO•AO}{PA}=\frac{{\sqrt{2}}}{{\sqrt{3}}}$,$OB=\sqrt{2}$,
∴$cos∠OBE=\frac{BE}{OB}=\frac{{\sqrt{2-\frac{6}{9}}}}{{\sqrt{2}}}=\frac{{\sqrt{6}}}{3}$,
即CD与平面PAB所成角的余弦值为$\frac{{\sqrt{6}}}{3}$.--------------------------------------------------(12分)

点评 本题考查线面、面垂直的证明,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网