ÌâÄ¿ÄÚÈÝ
12£®£¨l£©¸ù¾ÝÑù±¾Êý¾Ý¹À¼Æ½ñÄê9Ô·ݸÃÊÐÇøÃ¿ÌìPM2.5µÄƽ¾ùÖµºÍ·½²î£»
£¨2£©´ÓËù³éÑùµÄ6ÌìÖÐÈÎÒâ³éÈ¡ÈýÌ죬¼Ç¦Î±íʾ³éÈ¡µÄÈýÌìÖÐ¿ÕÆøÖÊÁ¿Îª¶þ¼¶µÄÌìÊý£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©ÀûÓþ¥Ò¶Í¼ÄÜÇó³ö¸Ã×éÊý¾ÝµÄƽ¾ùÊýºÍ·½²î£®
£¨2£©Óɾ¥Ò¶Í¼¿ÉÖª£¬Ëù³éÑùµÄ6ÌìÖÐÓÐ2Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬ÓÐ4Ìì¿ÕÆøÖÊÁ¿Îª¶þ¼¶£¬Ôò¦Î¿ÉÄÜÈ¡µÄֵΪ1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼Áм°ÆÚÍû£®
½â´ð ½â£º£¨1£©$\overline{x}$=$\frac{1}{6}$¡Á£¨26+30+36+44+50+60£©=41
s2=$\frac{1}{6}$¡Á[£¨26-41£©2+£¨30-41£©2+£¨36-41£©2+£¨44-41£©2+£¨50-41£©2+£¨60-41£©2]=137¡£¨4·Ö£©
¸ù¾ÝÑù±¾¹À¼Æ½ñÄê9Ô·ݸÃÊÐÇøÃ¿ÌìPM2.5µÄƽ¾ùֵΪ£º41΢¿Ë/Á¢·½Ã×£¬·½²îΪ137£®¡£¨5·Ö£©
£¨2£©´Ó¾¥Ò¶Í¼Öª£¬Ëù³éÑùµÄ6ÌìÖÐÓÐ2Ìì¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£¬ÓÐ4Ìì¿ÕÆøÖÊÁ¿Îª¶þ¼¶£¬Ôò¦Î¿ÉÄÜÈ¡µÄֵΪ1£¬2£¬3£¬
ÆäÖÐP£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬$P£¨¦Î=2£©=\frac{C_4^2•C_2^1}{C_6^3}=\frac{3}{5}$£¬P£¨¦Î=2£©=$\frac{{C}_{4}^{3}{C}_{2}^{0}}{{C}_{6}^{3}}$=$\frac{1}{5}$¡£¨10·Ö£©
¡à¦ÎµÄ·Ö²¼ÁÐΪ
| ¦Î | 0 | 1 | 2 |
| P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
¡à¦ÎµÄÊýѧÆÚÍûΪ2£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éƽ¾ùÊýºÍ·½²îµÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬¿¼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬ÊôÓÚÖеµÌ⣮
| A£® | x0£¼1 | B£® | x0£¾3 | C£® | 2£¼x0£¼3 | D£® | 1£¼x0£¼2 |
| A£® | £¨x-3£©2+y2=25 | B£® | £¨x-3£©2+y2=16 | C£® | £¨x+3£©2+y2=16 | D£® | £¨x+3£©2+y2=25 |
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{5¦Ð}{6}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $\frac{2¦Ð}{3}$ |