题目内容
2.在平面直角坐标系xoy中,已知曲线C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t为参数)与曲线C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ为参数,且a>0)有一个公共点在x轴上,则实数a=4.分析 求出曲线C1的普通方程为x+2y-4=0,曲线C2的直角坐标方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,由曲线C1与曲线C2有一个公共点在x轴上,得在x+2y-4=0上,y=0时,x=4,从而曲线C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1过点(4,0),由此能求出结果.
解答 解:∵曲线C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t为参数)
∴曲线C1的普通方程为x+2y-4=0,
∵曲线C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ为参数,且a>0),
∴曲线C2的直角坐标方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1,
联立$\left\{\begin{array}{l}{x+2y-4=0}\\{\frac{{x}^{2}}{a}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,
∵曲线C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t为参数)与曲线C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ为参数,且a>0)有一个公共点在x轴上,
在x+2y-4=0上,y=0时,x=4,
∴曲线C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1过点(4,0),
∵a>0,∴a=4.
故答案为:4.
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意参数方程、普通方程、直角坐标方程、极坐标方程的互化公式的合理运用.
| A. | 4 | B. | 8 | C. | 16 | D. | 32 |
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |