题目内容
13.已知{an}为等差数列,若a1+a5+a9=8π,则cos(a2+a8)=( )| A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 利用等差数列的性质可得a1+a9=a2+a8=2a5,结合已知,可求出a5,进而求出cos(a2+a8).
解答 解:∵{an}为等差数列,
∴a1+a9=a2+a8=2a5,
∵a1+a5+a9=8π,
∴a5=$\frac{8π}{3}$,a2+a8=$\frac{16π}{3}$,
∴cos(a2+a8)=cos$\frac{16π}{3}$=$-\frac{1}{2}$.
故选:A.
点评 本题应用了等差数列的性质:{an}为等差数列,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.
特例:若m+n=2p(m,n,p∈N+),则am+an=2ap.
练习册系列答案
相关题目
3.复数z满足(1-i)z=m+i (m∈R,i为虚数单位),在复平面上z对应的点不可能在 ( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
4.
若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图所示,则此时几何体的体积是( )
| A. | 2π | B. | $\frac{4π}{3}$ | C. | π | D. | $\frac{π}{2}$ |
8.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1>0\\ y≥1\end{array}$,则z=$\frac{x+2y}{x}$的最小值为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
18.用平行于圆锥底面的截面去截圆锥,所得小圆锥的侧面积与原来大圆锥的侧面积的比是$\frac{1}{2}$,则小圆锥的高与大圆锥的高的比是( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
5.某几何体的三视图如图所示,这几何体为( )

| A. | 长方体 | B. | 圆柱 | C. | 圆台 | D. | 棱柱 |
3.已知a,b,c是锐角△ABC中的角A、B、C的对边,若$B=\frac{π}{4}$,则$\frac{acosC-ccosA}{b}$的取值范围为( )
| A. | (-1,1) | B. | $(-\frac{1}{2},\frac{1}{2})$ | C. | $(-\sqrt{2},\sqrt{2})$ | D. | $(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$ |