题目内容

1.数列{an}满足a1=1,${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N+).
(1)证明:数列$\left\{{\frac{2^n}{a_n}}\right\}$是等差数列;
(2)求数列{an}的通项公式an

分析 (1)由已知可得$\frac{{{a_{n+1}}}}{{{2^{n+1}}}}=\frac{a_n}{{{a_n}+{2^n}}}$,即$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}=\frac{2^n}{a_n}+1$,利用等差数列的定义即可证明.
(2)由(Ⅰ)利用等差数列的通项公式即可得出.

解答 (1)证明:由已知可得$\frac{{{a_{n+1}}}}{{{2^{n+1}}}}=\frac{a_n}{{{a_n}+{2^n}}}$,即$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}=\frac{2^n}{a_n}+1$,即$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}-\frac{2^n}{a_n}=1$,
∴数列$\left\{{\frac{2^n}{a_n}}\right\}$是公差为1的等差数列.
(2)解:由(Ⅰ)知$\frac{2^n}{a_n}=\frac{2}{a_1}+(n-1)×1=n+1$,
∴${a_n}=\frac{2^n}{n+1}$.

点评 本题考查了等差数列的定义及其通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网