题目内容

已知-
π
2
<x<0,sinx+cosx=
1
5
,则
3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
tanx+cotx
的值为
 
考点:三角函数的恒等变换及化简求值
专题:三角函数的求值
分析:依题意,可求得sinx=-
3
5
,cosx=
4
5
,再利用三角函数的恒等变换对所求的关系式化简求值即可.
解答: 解:∵-
π
2
<x<0,
∴sinx<0,cosx>0,
又sinx+cosx=
1
5
,sin2x+cos2x=1,
∴sinx=-
3
5
,cosx=
4
5

3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
tanx+cotx
=
3•
1-cosx
2
-sinx+
1+cosx
2
tanx+cotx
=
-sinx-cosx+2
sinx
cosx
+
cosx
sinx
=
sinx
2
•(-sinx-cosx+2)=-
3
10
×(
9
5
)=-
27
50

故答案为:-
27
50
点评:本题考查三角函数的恒等变换及化简求值,考查降幂公式及二倍角的正弦公式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网