题目内容
已知a,b是正实数,A是a,b的等差中项,G是a,b等比中项,则( )
| A、ab≤AG |
| B、ab≥AG |
| C、ab≤|AG| |
| D、ab>AG |
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:由等差中项和等比中项的概念把A和G用含有a,b的代数式表示,然后利用基本不等式可得结论.
解答:
解:∵a>0,b>0,且A是a,b的等差中项,G是a,b的等比中项,
∴A=
,G=±
.
由基本不等式可得:|AG|=
•
≥ab.
故选:C.
∴A=
| a+b |
| 2 |
| ab |
由基本不等式可得:|AG|=
| a+b |
| 2 |
| ab |
故选:C.
点评:本题考查了等差数列和等比数列的性质,考查了等差中项和等比中项的概念,训练了利用基本不等式进行实数的大小比较,是基础题.
练习册系列答案
相关题目
满足不等式a3>(-3)3的实数a的取值范围是( )
| A、(-3,+∞) |
| B、(-∞,-3) |
| C、(3,+∞) |
| D、(-3,3) |
若目标函数z=ax+by(a>0,b>0)满足约束条件
且最大值为40,则
+
的最小值为( )
|
| 5 |
| a |
| 1 |
| b |
A、
| ||
B、
| ||
| C、1 | ||
| D、4 |
已知互相垂直的两条直线y=kx和y=-
分别与双曲线2x2-y2=1交于点A、B,点P在线段AB上,且满足
•
=
•
,则所有的点P在( )
| x |
| k |
| OA |
| OP |
| OB |
| OP |
| A、双曲线2x2-y2=1上 |
| B、圆x2+y2=1上 |
| C、椭圆上 |
| D、|x|+|y|=1上 |
已知函数f(x)=
,则f[f(-
)]=( )
|
| 3 |
| 2 |
A、
| ||
B、
| ||
C、-
| ||
D、-
|