题目内容

17.在等差数列{an}中,a2=4,前4项之和为18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=n•{2^{{a_n}-2}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)利用已知条件列出方程组,求出首项与公差,即可求数列{an}的通项公式;
(Ⅱ)利用错位相减法求和,求解即可.

解答 (本小题满分12分)
解:(Ⅰ)设等差数列{an}的公差为d.
由已知得$\left\{\begin{array}{l}{a_1}+d=4\\ 4{a_1}+\frac{4×3}{2}d=18\end{array}\right.$…(2分)    
 解得$\left\{\begin{array}{l}{a_1}=3\\ d=1.\end{array}\right.$…(4分)
所以an=n+2.…(5分)
(Ⅱ)由(Ⅰ)可得bn=n•2n,…(6分)
∴Tn=b1+b2+b3+…+bn=1×2+2×22+3×23+…+n×2n①…(7分)
2Tn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1②…(8分)
①-②得:$-{T_n}=2+{2^2}+{2^3}+…+{2^n}-n×{2^{n+1}}$…(9分)
$-{T_n}=\frac{{2-{2^{n+1}}}}{1-2}-n×{2^{n+1}}=(1-n)×{2^{n+1}}-2$…(11分)
∴${T_n}=(n-1)×{2^{n+1}}+2$…(12分)

点评 本题考查数列求和,以及通项公式的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网