题目内容
6.| A. | v1>v2,s1>s2 | B. | v1<v2,s1>s2 | C. | v1>v2,s1<s2 | D. | v1<v2,s1<s2 |
分析 由茎叶图先求出平均数,再计算方差.
解答 解:由茎叶图性质得:
V1=$\frac{1}{4}(9+13+14+20)$=14,
V2=$\frac{1}{4}(8+9+13+22)$=13,
S1=$\frac{1}{4}$[(9-14)2+(13-14)2+(14-14)2+(20-14)2]=$\frac{31}{2}$,
S2=$\frac{1}{4}$[(8-13)2+(9-13)2+(13-13)2+(22-13)2]=$\frac{61}{2}$.
∴V1>V2,S1<S2.
故选:C.
点评 本题考查两组数据的平均数和方差的大小的比较,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.
练习册系列答案
相关题目
14.在△ABC中,a=2,c=1,∠B=60°,那么b等于( )
| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{{\sqrt{3}}}{2}$ |
1.在“二十四节气入选非遗”宣传活动中,从甲、乙、丙三位同学中任选两人介绍一年中时令、气候、物候等方面的变化规律,那么甲同学被选中的概率为( )
| A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$的左焦点F1(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{4}$的切线,切点为E,延长F1E交双曲线右支于点P.若E是F1P中点,则双曲线的离心率为( )
| A. | $\frac{5}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{10}}{2}$ |