题目内容
6.在△ABC中,A:B:C=1:2:3,则a:b:c=( )| A. | 1:2:3 | B. | sin1:sin2:sin3 | C. | 1:$\sqrt{3}$:2 | D. | 1:2:$\sqrt{3}$ |
分析 根据三角形的内角和定理,可判断此三角形为直角三角形,再利用30°所对的直角边是斜边的一半,勾股定理求解.
解答 解:在△ABC中,A:B:C=1:2:3,
所以A=30°,B=60°,C=90°.
设a=x,则c=2x,
根据勾股定理,得b=$\sqrt{3}$x,
可得:a:b:c=1:$\sqrt{3}$:2.
故选:C.
点评 注意这一结论:30°的直角三角形中,三边从小到大的比是1:$\sqrt{3}$:2.
练习册系列答案
相关题目
14.已知函数f(x)=sinx-bcosx(其中b为实数)的图象关于直线x=-$\frac{π}{6}$对称,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是( )
| A. | 函数f(x)的图象向左平移$\frac{π}{3}$个单位得到的函数是偶函数 | |
| B. | 不等式f(x1)f(x2)≤4取到等号时|x1-x2|的最小值为2π | |
| C. | 函数f(x)的图象的一个对称中心为($\frac{2}{3}$π,0) | |
| D. | 函数f(x)在区间[$\frac{π}{6}$,π]上单调递增 |
17.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1与椭圆$\frac{x^2}{m^2}+\frac{y^2}{b^2}$=1(m>b>0)的离心率之积等于1,则以a,b,m为边长的三角形一定是( )
| A. | 等腰三角形 | B. | 钝角三角形 | C. | 锐角三角形 | D. | 直角三角形 |
14.有编号为D1,D2,…,D10的10个零件,测量其直径(单位:mm),得到下面数据:
其中直径在区间(148,152]内的零件为一等品.
(1)从上述10个零件中,随机抽取2个,求这2个零件均为一等品的概率;
(2)从一等品零件中,随机抽取2个.用ξ表示这2个零件直径之差的绝对值,求随机变量ξ的分布列及数学期望.
其中直径在区间(148,152]内的零件为一等品.
| 编号 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 |
| 直径 | 151 | 148 | 149 | 151 | 149 | 152 | 147 | 146 | 153 | 148 |
(2)从一等品零件中,随机抽取2个.用ξ表示这2个零件直径之差的绝对值,求随机变量ξ的分布列及数学期望.
16.下列关于幂函数y=xα(α∈Q)的论述中,正确的是( )
| A. | 当α=0时,幂函数的图象是一条直线 | |
| B. | 幂函数的图象都经过(0,0)和(1,1)两个点 | |
| C. | 若函数f(x)为奇函数,则f(x)在定义域内是增函数 | |
| D. | 幂函数f(x)的图象不可能在第四象限内 |