题目内容

已知y=f(x)是R上的奇函数,且当x<0时,f(x)=x2+4x-1,求y=f(x)的解析式,画出y=f(x)的图象,并指出y=f(x)的单调区间.
考点:函数奇偶性的性质,函数解析式的求解及常用方法,二次函数的性质
专题:函数的性质及应用
分析:先设x>0,则可得-x<0,然后利用f(-x)=-f(x)及x<0时函数的解析式,可求x>0时的函数f(x)的解析式,再由f(0)=0,即可求解;先画出y=f(x)(x<0)的图象,利用奇函数的对称性可得到相应y=f(x)(x<0)的图象,由图可求单调区间
解答: 解:设x>0,则可得-x<0,
∴f(-x)=(-x)2-4x-1=x2-4x-1.
又∵f(x)为奇函数,
∴f(-x)=-f(x).
∴f(x)=-x2+4x+1.
又f(0)=0,
∴f(x)=
x2+4x-1,x<0
0,x=0
-x2+4x+1,x>0

y=f(x)的图象如下图所示:

由图可知,其增区间为[-2,2]
减区间为(-∞,-2],[2,+∞).
点评:本题主要考查了奇函数图象的对称性的应用及奇函数性质的简单应用,属于基础试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网