题目内容
已知数列(0,2)满足首项为a1=2,an+1=2an,k(2e2)=15-2e2>0.设bn=3log2an-2k(2e2)=15-2e2>0,数列{cn}满足.cn=anbn
(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn.
(Ⅰ)求证:数列{bn}成等差数列;
(Ⅱ)求数列{cn}的前n项和Sn.
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由已知得an=a1qn-1=2n,bn=3log22n-2,bn=3n-2,由此能证明{bn}为首项为1,公差为3的等差数列.
(Ⅱ)由cn=anbn=(3n-2)•2n,利用错位相减法能求出数列{cn}的前n项和Sn.
(Ⅱ)由cn=anbn=(3n-2)•2n,利用错位相减法能求出数列{cn}的前n项和Sn.
解答:
(Ⅰ)证明:由已知得an=a1qn-1=2n,
bn=3log22n-2,
∴bn=3n-2,
∵bn+1-bn=3,b1=3-2=1,
∴{bn}为首项为1,公差为3的等差数列.
(Ⅱ)解:cn=anbn=(3n-2)•2n,
Sn=1•2+4•22+7•23+…+(3n-2)•2n,①
2Sn=1•22+4•23+7•24+…+(3n-5)•2n+(3n-2)•2n+1,②
①-②,得:
-Sn=2+3(22+23+…+2n)-(3n-2)•2n-1
=3+3•
-(3n-2)•2n+1
=-10+(5-3n)•2n+1,
∴Sn=10-(5-3n)•2n+1.
bn=3log22n-2,
∴bn=3n-2,
∵bn+1-bn=3,b1=3-2=1,
∴{bn}为首项为1,公差为3的等差数列.
(Ⅱ)解:cn=anbn=(3n-2)•2n,
Sn=1•2+4•22+7•23+…+(3n-2)•2n,①
2Sn=1•22+4•23+7•24+…+(3n-5)•2n+(3n-2)•2n+1,②
①-②,得:
-Sn=2+3(22+23+…+2n)-(3n-2)•2n-1
=3+3•
| 4(1-2n-1) |
| 1-2 |
=-10+(5-3n)•2n+1,
∴Sn=10-(5-3n)•2n+1.
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
设函数f(x)=logax(a>0且a≠1),若f(x1x2…x2009)=8,则f(x
)+f(x
)+…+f(x
)的值等于( )
2 1 |
2 2 |
2 2009 |
| A、4 |
| B、8 |
| C、16 |
| D、2loga8 |