ÌâÄ¿ÄÚÈÝ
3£®Ä³Ñ§Ð£ÓÐÈô¸ÉѧÉúÉçÍÅ£¬ÆäÖС°ÎÄѧÉ硱¡¢¡°Î§ÆåÉ硱¡¢¡°Êé·¨É硱µÄÈËÊý·Ö±ðΪ9¡¢18¡¢27£®ÏÖ²ÉÓ÷ֲã³éÑùµÄ·½·¨´ÓÕâÈý¸öÉçÍÅÖгéÈ¡6ÈËÍâ³ö²Î¼Ó»î¶¯£®£¨1£©ÇóÓ¦´ÓÕâÈý¸öÉçÍÅÖзֱð³éÈ¡µÄÈËÊý£»
£¨2£©½«³éÈ¡µÄ6È˽øÐбàºÅ£¬±àºÅ·Ö±ðΪA1£¬A2£¬A3£¬A4£¬A5£¬A6£¬ÏÖ´ÓÕâ6ÈËÖÐËæ»úµØ³é³ö2ÈË×é³É»î¶¯Ð¡×飮
¢ÙÓÃËù¸ø±àºÅÁгöËùÓпÉÄܵĽá¹û£»
¢ÚÉèAΪʼþ¡°±àºÅΪA1ºÍA2µÄ2ÈËÖÐÇ¡ÓÐ1È˱»³éµ½¡±£¬ÇóʼþA·¢ÉúµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ³éÈ¡±ÈÀý£¬¿ÉµÃÏàÓ¦µÄÈËÊý£»
£¨2£©ÁоٿɵôÓ6ÃûÈËÔ±ÖÐËæ»ú³éÈ¡2ÃûµÄËùÓнá¹û¹²15ÖÖ£»Ê¼þA°üº¬ÉÏÊö8¸ö£¬ÓɸÅÂʹ«Ê½¿ÉµÃ£®
½â´ð ½â£º£¨1£©Ó¦´Ó¡°ÎÄѧÉ硱¡¢¡°Î§ÆåÉ硱¡¢¡°Êé·¨É硱ÖгéÈ¡µÄÈËÊý·Ö±ðÊÇ£º1£¬2£¬3£¬
£¨2£©¢Ù´Ó6ÃûÔ˶¯Ô±ÖÐËæ»ú³éÈ¡2È˲μÓË«´ò±ÈÈüµÄËùÓпÉÄܽá¹ûΪ£º
£¨A1£¬A2£©£¬£¨A1£¬A3£©£¬£¨A1£¬A4£©£¬£¨A1£¬A5£©£¬£¨A1£¬A6£©£¬
£¨A2£¬A3£©£¬£¨A2£¬A4£©£¬£¨A2£¬A5£©£¬£¨A2£¬A6£©£¬£¨A3£¬A4£©£¬
£¨A3£¬A5£©£¬£¨A3£¬A6£©£¬£¨A4£¬A5£©£¬£¨A4£¬A6£©£©£¬£¨A5£¬A6£©£¬¹²15ÖÖ£®
¢ÚʼþA°üº¬£º£¨A1£¬A3£©£¬£¨A1£¬A4£©£¬£¨A1£¬A5£©£¬£¨A1£¬A6£©£¬
£¨A2£¬A3£©£¬£¨A2£¬A4£©£¬£¨A2£¬A5£©£¬£¨A2£¬A6£©£©£¬¹²8¸ö»ù±¾Ê¼þ£®
Òò´Ë£¬Ê¼þA·¢ÉúµÄ¸ÅÂÊP£¨A£©=$\frac{8}{15}$£®
µãÆÀ ±¾Ì⿼²é¹Åµä¸ÅÐͼ°Æä¸ÅÂʹ«Ê½£¬Éæ¼°·Ö²ã³éÑù£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®Ä³¹«Ë¾ÓÐA¡¢B¡¢C¡¢D¡¢EÎåÁ¾Æû³µ£¬ÆäÖÐA¡¢BÁ½Á¾Æû³µµÄ³µÅÆÎ²ºÅ¾ùΪ1£¬C¡¢DÁ½Á¾Æû³µµÄ³µÅÆÎ²ºÅ¾ùΪ2£¬E³µµÄ³µÅÆÎ²ºÅΪ6£®ÒÑÖªÔÚ·ÇÏÞÐÐÈÕ£¬Ã¿Á¾³µ¿ÉÄܳö³µ»ò²»³ö³µ£¬A¡¢B¡¢EÈýÁ¾Æû³µÃ¿Ìì³ö³µµÄ¸ÅÂʾùΪ$\frac{2}{3}$£¬C¡¢DÁ½Á¾Æû³µÃ¿Ìì³ö³µµÄ¸ÅÂʾùΪ$\frac{1}{2}$£¬ÎåÁ¾Æû³µÊÇ·ñ³ö³µÏ໥¶ÀÁ¢£¬¸Ã¹«Ë¾ËùÔÚµØÇøÆû³µÏÞÐй涨ÈçÏ£º
ÀýÈ磬ÐÇÆÚÒ»½ûÖ¹³µÅÆÎ²ºÅΪ0ºÍ5µÄ³µÁ¾Í¨ÐУ®
£¨1£©Çó¸Ã¹«Ë¾ÔÚÐÇÆÚÒ»ÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊ£»
£¨2£©ÉèX±íʾ¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þºÍÐÇÆÚÈýÁ½Ìì³ö³µµÄ³µÁ¾ÊýÖ®ºÍ£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
| ¹¤×÷ÈÕ | ÐÇÆÚÒ» | ÐÇÆÚ¶þ | ÐÇÆÚÈý | ÐÇÆÚËÄ | ÐÇÆÚÎå |
| ÏÞÐгµÅÆÎ²ºÅ | 0ºÍ5 | 1ºÍ6 | 2ºÍ7 | 3ºÍ8 | 4ºÍ9 |
£¨1£©Çó¸Ã¹«Ë¾ÔÚÐÇÆÚÒ»ÖÁÉÙÓÐ2Á¾Æû³µ³ö³µµÄ¸ÅÂÊ£»
£¨2£©ÉèX±íʾ¸Ã¹«Ë¾ÔÚÐÇÆÚ¶þºÍÐÇÆÚÈýÁ½Ìì³ö³µµÄ³µÁ¾ÊýÖ®ºÍ£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
18£®Ä³ËÄÀą̂µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃËÄÀą̂µÄÌå»ýÊÇ£¨¡¡¡¡£©

| A£® | 7 | B£® | 6 | C£® | 5 | D£® | 4 |
6£®ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Èôa£¾b£¬c£¾d£¬Ôòac£¾bd | B£® | Èôac£¾bc£¬Ôòa£¾b | ||
| C£® | Èôa£¾b£¬c£¾d£¬Ôòa-c£¾b-d | D£® | Èô$\frac{a}{{c}^{2}}$£¼$\frac{b}{{c}^{2}}$£¬Ôòa£¼b |
7£®ÏÂÃæ¼¸ÖÖÍÆÀíÖÐÊÇÑÝÒïÍÆÀíµÄΪ£¨¡¡¡¡£©
| A£® | ¿ÆÑ§¼ÒÀûÓÃÓãµÄ³Á¸¡ÔÀíÖÆÔìDZͧ | |
| B£® | ²ÂÏëÊýÁÐ$\frac{1}{1¡Á2}$£¬$\frac{1}{2¡Á3}$£¬$\frac{1}{3¡Á4}$£¬¡µÄͨÏʽΪan=$\frac{1}{n£¨n+1£©}$£¨n¡ÊN+£© | |
| C£® | °ë¾¶ÎªrµÄÔ²µÄÃæ»ýS=¦Ðr2£¬Ôòµ¥Î»Ô²µÄÃæ»ýS=¦Ð | |
| D£® | ÓÉÆ½ÃæÖ±½Ç×ø±êϵÖÐÔ²µÄ·½³ÌΪ£¨x-a£©2+£¨y-b£©2=r2£¬ÍƲâ¿Õ¼äÖ±½Ç×ø±êϵÖÐÇòµÄ·½³ÌΪ£¨x-a£©2+£¨y-b£©2+£¨z-c£©2=r2 |