题目内容
7.设实数x,y满足$\left\{\begin{array}{l}{y≤2x-2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则$\frac{y-1}{x+3}$的取值范围是( )| A. | (-∞,$\frac{1}{5}$] | B. | [-$\frac{1}{5}$,1] | C. | (-$\frac{1}{5}$,$\frac{1}{3}$] | D. | ($\frac{1}{3}$,1] |
分析 由约束条件作出可行域,利用$\frac{y-1}{x+3}$的几何意义,即可行域内的动点与定点(-3,1)连线的斜率得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{y≤2x-2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$作出可行域如图,
A(2,0),
联立$\left\{\begin{array}{l}{x=2}\\{y=2x+2}\end{array}\right.$,解得B(2,6).
$\frac{y-1}{x+3}$的几何意义为可行域内的动点与定点(-3,1)连线的斜率.
∵kPA=$\frac{1-0}{-3-2}$=-$\frac{1}{5}$,kPB=$\frac{6-1}{2+3}$=1.
∴$\frac{y-1}{x+3}$的取值范围是[-$\frac{1}{5}$,1].
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
19.若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为( )
| A. | -π | B. | -$\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | 2π |