题目内容

17.若二次函数f(x)=x2+1的图象与曲线C:g(x)=aex+1(a>0)存在公共切线,则实数a的取值范围为(0,$\frac{4}{{e}^{2}}$].

分析 设公切线与f(x)、g(x)的切点坐标,由导数几何意义、斜率公式列出方程化简,分离出a后构造函数,利用导数求出函数的单调区间、最值,即可求出实数a的取值范围.

解答 解:f(x)=x2+1的导数为f′(x)=2x,g(x)=aex+1的导数为g′(x)=aex
设公切线与f(x)=x2+1的图象切于点(x1,x12+1),
与曲线C:g(x)=aex+1切于点(x2,aex2+1),
∴2x1=aex2=$\frac{a{e}^{{x}_{2}}+1-({{x}_{1}}^{2}+1)}{{x}_{2}-{x}_{1}}$=$\frac{a{e}^{{x}_{2}}-{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$,
化简可得,2x1=$\frac{2{x}_{1}-{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$,得x1=0或2x2=x1+2,
∵2x1=aex2,且a>0,∴x1>0,则2x2=x1+2>2,即x2>1,
由2x1=aex2,得a=$\frac{2{x}_{1}}{{e}^{{x}_{2}}}$=$\frac{4({x}_{2}-1)}{{e}^{{x}_{2}}}$,
设h(x)=$\frac{4(x-1)}{{e}^{x}}$(x>1),则h′(x)=$\frac{4(2-x)}{{e}^{x}}$,
∴h(x)在(1,2)上递增,在(2,+∞)上递减,
∴h(x)max=h(2)=$\frac{4}{{e}^{2}}$,
∴实数a的取值范围为(0,$\frac{4}{{e}^{2}}$],
故答案为:(0,$\frac{4}{{e}^{2}}$].

点评 本题考查了导数的几何意义、斜率公式,导数与函数的单调性、最值问题的应用,及方程思想和构造函数法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网