题目内容

在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:
(Ⅰ)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(Ⅱ)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为ξ,求ξ的分布列和数学期望.
考点:离散型随机变量的期望与方差,茎叶图,离散型随机变量及其分布列
专题:概率与统计
分析:(Ⅰ)分别求出从甲、乙两名学生中的平均成绩和方差,得到甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.
(Ⅱ)ξ的所有可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答: (本小题满分12分)
解:(Ⅰ)学生甲的平均成绩
.
x
  
 
=
68+76+79+86+88+95
6
=82,
学生乙的平均成绩
.
x
=
71+75+82+84+86+94
6
=82,
又S2=
1
6
[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77,
S2=
1
6
[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=
167
3

.
x
=
.
x
,S2>S2
说明甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.(6分)
(Ⅱ)ξ的所有可能取值为0,1,2,
则P(ξ=0)=
C
2
4
C
2
6
=
2
5
,P(ξ=1)=
C
1
4
C
1
2
C
2
6
=
8
15
,P(ξ=2)=
C
2
2
C
2
6
=
1
15

ξ的分布列为
ξ012
P
2
5
8
15
1
15
所以数学期望Eξ=
2
5
+1×
8
15
+2×
1
15
=
2
3
.(12分)
点评:本题考查平均数和方差的求法及应用,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网