题目内容
(文)已知数列{an}满足:a1=1,an+an+1=4n,Sn是数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)设数列{
}的前n项和为Kn,证明:对于任意的n∈N*,都有Kn<
.
(1)求数列{an}的通项公式;
(2)设数列{
| 1 |
| Sn+1-1 |
| 3 |
| 4 |
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由an+an+1=4n,得an+1+an+2=4(n+1),两式相减得an+2-an=4,由此能求出an=2n-1.
(2)Sn=
=n2,
=
=
(
-
),由此利用裂项求和法能证明对于任意的n∈N*,都有Kn<
.
(2)Sn=
| n(a1+an) |
| 2 |
| 1 |
| Sn+1-1 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 4 |
解答:
(文)(1)解:∵数列{an}满足:a1=1,an+an+1=4n,
∴an+1+an+2=4(n+1),两式相减得:
an+2-an=4,即数列{an}隔项成等差数列
又a1=1,代入式子可得a2=3,
∴n为奇数时,an=a1+4(
-1)=2n-1;
n为偶数时,an=a2+4(
-1)=2n-1.
∴n∈N*,an=2n-1
(2)证明:由(1)知an=2n-1,数列{an}成等差数列,
∴Sn=
=n2,
=
=
(
-
)
∴Kn=
(1-
)+
(
-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+
-
+
-
+…+
-
+
-
)
=
(1+
-
-
)
=
-
<
.
∴对于任意的n∈N*,都有Kn<
.
∴an+1+an+2=4(n+1),两式相减得:
an+2-an=4,即数列{an}隔项成等差数列
又a1=1,代入式子可得a2=3,
∴n为奇数时,an=a1+4(
| n+1 |
| 2 |
n为偶数时,an=a2+4(
| n |
| 2 |
∴n∈N*,an=2n-1
(2)证明:由(1)知an=2n-1,数列{an}成等差数列,
∴Sn=
| n(a1+an) |
| 2 |
| 1 |
| Sn+1-1 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Kn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 2n+3 |
| 2n2+6n+4 |
| 3 |
| 4 |
∴对于任意的n∈N*,都有Kn<
| 3 |
| 4 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目