题目内容

已知xi>0(i=1,2,3,4)且x1+x2+x3+x4=1,求证:x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
考点:不等式的证明
专题:不等式的解法及应用
分析:设x1+x2=m,x3+x4=n,则m>0,n>0,且
x1
m
+
x2
m
=1,
x3
n
+
x4
n
=1,m+n=1
,由此入手能够证明x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
解答: 证明:设x1+x2=m,x3+x4=n,
则m>0,n>0,且
x1
m
+
x2
m
=1,
x3
n
+
x4
n
=1,m+n=1

x1
m
log2
x1
m
+
x2
m
log2
x2
m
≥-1
①,
x3
n
log2
x3
n
+
x4
n
log2
x4
n
≥-1
②,
mlog2m+nlog2n≥-1③,
由①式得x1(log2x1-log2m)+x2(log2x2-log2m)≥-m,
∴x1log2x1+x2log2x2≥-m+mlog2m
同理:由②得到:x3log2x3+x4log2x4≥-n+nlog2n,
∴x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-(m+n)+(mlog2m+nlog2n),
由③式和m+n=1得到:x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
∴x1log2x1+x2log2x2+x3log2x3+x4log2x4≥-2.
点评:本题考查不等式的证明,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网