题目内容
3.已知a、b∈R,且2ab+2a2+2b2-9=0,若M为a2+b2的最小值,则约束条件$\left\{\begin{array}{l}0≤y≤\sqrt{{M^2}-{x^2}}\\ x-y≥-M\\ x+y≤M.\end{array}\right.$所确定的平面区域内整点(横坐标纵坐标均为整数的点)的个数为( )| A. | 9 | B. | 13 | C. | 16 | D. | 18 |
分析 根据基本不等式的性质求出M的值,利用数形结合进行求解即可.
解答 解:由2ab+2a2+2b2-9=0结合2ab≤a2+b2得3(a2+b2)≥9⇒a2+b2≥3(当且仅当a=b时等号成立)
故M=3,故约束条件确定的平面区域如右图阴影所示,在区域内,
在x轴上整点有7个,在直线x=1上有5个,在x=2上有3个,
在x=3上有1个,共16个.![]()
故选:C
点评 本题主要考查线性规划的应用,利用基本不等式的性质求出M的值是解决本题的关键.综合性较强.
练习册系列答案
相关题目
14.已知平面向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |