ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1+tcos¦Á}\\{y=1+tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£©£®ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=¦Ñcos¦È+2£®£¨¢ñ£©Ð´³öÖ±Ïßl¾¹ýµÄ¶¨µãµÄÖ±½Ç×ø±ê£¬²¢ÇóÇúÏßCµÄÆÕͨ·½³Ì£»
£¨¢ò£©Èô$¦Á=\frac{¦Ð}{4}$£¬ÇóÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬ÒÔ¼°Ö±ÏßlÓëÇúÏßCµÄ½»µãµÄ¼«×ø±ê£®
·ÖÎö £¨¢ñ£©ÓɲÎÊý·½³Ì¿ÉµÃ¶¨µã×ø±ê£¬ÔÙÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬¦Ñ2=x2+y2£¬Æ½·½»¯¼ò¼´¿ÉµÃµ½ËùÇóÆÕͨ·½³Ì£»
£¨¢ò£©Ð´³öÖ±ÏßlµÄ²ÎÊý·½³ÌºÍÆÕͨ·½³Ì£¬½áºÏÖ±½Ç×ø±êºÍ¼«×ø±êµÄ¹ØÏµ£¬¿ÉµÃÖ±Ïߵļ«×ø±ê·½³Ì£¬ÔÙÁªÁ¢ÇúÏßCµÄ¼«×ø±ê·½³Ì£¬¼´¿ÉµÃµ½ËùÇó½»µãµÄ¼«×ø±ê£®
½â´ð ½â£º£¨¢ñ£©Ö±Ïßl¾¹ý¶¨µã£¨-1£¬1£©£¬-----------------------------------------------------------------£¨2·Ö£©
ÓɦÑ=¦Ñcos¦È+2µÃ¦Ñ2=£¨¦Ñcos¦È+2£©2£¬
µÃÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2=£¨x+2£©2£¬»¯¼òµÃy2=4x+4£»---£¨5·Ö£©
£¨¢ò£©Èô$¦Á=\frac{¦Ð}{4}$£¬µÃ$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$µÄÆÕͨ·½³ÌΪy=x+2£¬----------------------------------£¨6·Ö£©
ÔòÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin¦È=¦Ñcos¦È+2£¬------------------------------------------------£¨8·Ö£©
ÁªÁ¢ÇúÏßC£º¦Ñ=¦Ñcos¦È+2£®
µÃsin¦È=1£¬È¡$¦È=\frac{¦Ð}{2}$£¬µÃ¦Ñ=2£¬ËùÒÔÖ±ÏßlÓëÇúÏßCµÄ½»µãΪ$£¨2£¬\;\frac{¦Ð}{2}£©$£®------------£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | $\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AC}$ | B£® | $\frac{3}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$ | C£® | $\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$ | D£® | $\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ |
| A£® | 2 | B£® | -2 | C£® | $\frac{5}{4}$ | D£® | $-\frac{5}{4}$ |