题目内容

3.已知实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$目标函数z=2log4y-log2x,则z的最大值为1.

分析 先画出满足不等式组$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$的平面区域,然后分析z=2log4y-log2x的几何意义,进而给出z的取值范围.

解答 解:实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$平面区域,如下图所示:
∵目标函数z=2log4y-log2x=log2$\frac{y}{x}$,其中$\frac{y}{x}$表示区域内点P与O(0,0)点连线的斜率,由$\left\{\begin{array}{l}{y=2}\\{x+2y-5=0}\end{array}\right.$,解得A(1,2)
又∵当点P在A时,即当x=1,y=2时,$\frac{y}{x}$取得最大值,z最大,最大值为z=1,
故答案为:1.

点评 平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网