ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãP£¨-1£¬$\frac{\sqrt{2}}{2}$£©£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±ÏßAB£ºy=k£¨x+1£©½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬½»Ö±Ïßl£ºx=-2ÓÚµãM£¬ÉèÖ±ÏßPA¡¢PB¡¢PMµÄбÂÊÒÀ´ÎΪk1¡¢k2¡¢k3£¬ÎÊk1¡¢k3¡¢k2ÊÇ·ñ³ÉµÈ²îÊýÁУ¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬½«P´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÓÉÖ±Ïß·½³Ì£¬ÇóµÃMµã×ø±ê£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½ÑéÖ¤ÊÇ·ñk1+k2=2k3£¬µÈʽ³ÉÁ¢£¬Èô³ÉÁ¢Ôòk1¡¢k3¡¢k2³ÉµÈ²îÊýÁУ®·ñÔò²»³ÉµÈ²îÊýÁУ®
½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬Ôòb2=a2-c2=c2£¬
¡à½«P£¨-1£¬$\frac{\sqrt{2}}{2}$£©´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$£¬¼´$\frac{1}{2{c}^{2}}+\frac{1}{2{c}^{2}}=1$£¬½âµÃ£ºc=1£¬
Ôòa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB£ºy=k£¨x+1£©£¬kÏÔÈ»´æÔÚÇÒ²»Îª0£¬
$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2+4k2x+2k2-2=0£¬
Ôòx1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬y1=k£¨x1+1£©£¬y2=k£¨x2+1£©£¬
µ±x=-2ʱ£¬y=-k£¬ÔòM£¨-2£¬-k£©£¬
Ôòk1=$\frac{{y}_{1}-\frac{\sqrt{2}}{2}}{{x}_{1}+1}$£¬k2=$\frac{{y}_{2}-\frac{\sqrt{2}}{2}}{{x}_{2}+1}$£¬k3=$\frac{\sqrt{2}}{2}$+k£¬
ÓÉk1+k2=$\frac{{y}_{1}-\frac{\sqrt{2}}{2}}{{x}_{1}+1}$+$\frac{{y}_{2}-\frac{\sqrt{2}}{2}}{{x}_{2}+1}$=$\frac{£¨{y}_{1}-\frac{\sqrt{2}}{2}£©£¨{x}_{2}+1£©+£¨{y}_{2}+\frac{\sqrt{2}}{2}£©£¨{x}_{1}+1£©}{£¨{x}_{1}+1£©£¨{x}_{2}+1£©}$=$\frac{2k{x}_{1}{x}_{2}+2k£¨{x}_{1}+{x}_{2}£©-\frac{\sqrt{2}}{2}£¨{x}_{1}+{x}_{2}£©+2k-\sqrt{2}}{{x}_{1}{x}_{2}+£¨{x}_{1}+{x}_{2}£©+1}$£¬
=2k+$\sqrt{2}$£¬
¡àk1+k2=2k3£¬
¡àk1¡¢k3¡¢k2³ÉµÈ²îÊýÁУ®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½ºÍµÈ²îÊýÁÐÖÐÏîÐÔÖÊ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 4 | B£® | 9 | C£® | 10 | D£® | 11 |
| A£® | $£¨{-¡Þ£¬-\frac{1}{8}}£©¡È[{\frac{1}{8}£¬+¡Þ}£©$ | B£® | $[{-\frac{1}{4}£¬0}£©¡È£¨{0£¬\frac{1}{8}}]$ | C£® | £¨0£¬8] | D£® | $£¨{-¡Þ£¬-\frac{1}{4}}]¡È[{\frac{1}{8}£¬+¡Þ}£©$ |
| ÈÕÆÚ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| ÌìÆø | Çç | ö² | ö² | Òõ | ö² | ö² | Òõ | ö² | ö² | ö² | Òõ | Çç | ö² | ö² | ö² |
| ÈÕÆÚ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| ÌìÆø | ö² | ö² | ö² | Òõ | Çç | ö² | ö² | Çç | ö² | Çç | ö² | ö² | ö² | Çç | ö² |
ϱíÊÇÒ»¸öµ÷–Ë»ú¹¹¶Ô±ÈÒÔÉÏÁ½Äê11Ô·ݣ¨¸ÃÄê²»ÏÞÐÐ30Ìì¡¢´ÎÄêÏÞÐÐ30Ìì¹²60Ì죩µÄµ÷²é½á¹û£º
±í¶þ
| ²»ÏÞÐÐ | ÏÞÐÐ | ×Ü¼Æ | |
| ûÓÐÎíö² | a | ||
| ÓÐÎíö² | b | ||
| ×Ü¼Æ | 30 | 30 | 60 |
£¨2£©ÇëÓÃͳ¼ÆÑ§ÔÀí¼ÆËãÈôûÓÐ90%µÄ°ÑÎÕÈÏΪÎíö²ÓëÏÞÐÐÓйØÏµ£¬ÔòÏÞÐÐʱÓжàÉÙÌìûÓÐÎíö²£¿
£¨ÓÉÓÚ²»ÄÜʹÓüÆËãÆ÷£¬ËùÒÔ±íÖÐÊý¾ÝʹÓÃʱËÄÉáÎåÈëÈ¡ÕûÊý£©
| P£¨K2¡Ýk£© | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |