题目内容

17.如图,平面内有三个向量$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为30°,且$|\overrightarrow{OA}|=2,|\overrightarrow{OC}|=4\sqrt{3}$,若$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,则λ=4.

分析 以OC为对角线,以OA,OB方向为邻边作平行四边形,求出平行四边形OA方向上的边长即可得出答案.

解答 解:过点C作CE∥OB交OA的延长线于点E,过点C作CF∥OA交OB的延长线于点F,则$\overrightarrow{OC}=\overrightarrow{OE}+\overrightarrow{OF}$.
∴∠OCE=∠COF=90°,∵∠COE=30°,∴CE=$\frac{1}{2}$OE,
∵CE2+OC2=OE2,∴CE=4,OE=8.
∵OA=2,∴λ=$\frac{OE}{OA}$=4.
故答案为:4.

点评 本题考查了平面向量的基本定理,向量运算的几何意义,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网