题目内容

16.定义在R上的函数f(x)在(6,+∞)上为增函数,且函数y=f(x+6)为偶函数,则(  )
A.f(4)<f(7)B.f(4)>f(7)C.f(5)>f(7)D.f(5)<f(7)

分析 根据题意,由y=f(x+6)为偶函数,可得函数y=f(x)的图象关于直线x=6对称,分析可得f(4)=f(8),f(5)=f(7);可以判定C、D错误,再结合函数在(6,+∞)上的单调性,可得f(8)>f(7),又由f(4)=f(8),即可得f(4)>f(7);综合可得答案.

解答 解:根据题意,y=f(x+6)为偶函数,则函数f(x)的图象关于x=6对称,
f(4)=f(8),f(5)=f(7);
故C、D错误;
又由函数在(6,+∞)上为增函数,则有f(8)>f(7);
又由f(4)=f(8),
故有f(4)>f(7);
故选:B.

点评 本题考查函数的单调性与奇偶性,其中根据已知分析出函数y=f(x)的图象关于直线x=6对称是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网