题目内容
已知幂函数f(x)=(m-1)2x m2-4m+2在(0,+∞)上单调递增,函数g(x)=2x-k.
(Ⅰ)求m的值;
(Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B⊆A,求实数K的取值范围.
(Ⅰ)求m的值;
(Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B⊆A,求实数K的取值范围.
考点:幂函数的性质
专题:函数的性质及应用
分析:(Ⅰ)根据幂函数的定义和性质即可求出m的值,
(Ⅱ)先求出f(x),g(x)的值域,再根据若A∪B⊆A,得到关于k的不等式组,解的即可.
(Ⅱ)先求出f(x),g(x)的值域,再根据若A∪B⊆A,得到关于k的不等式组,解的即可.
解答:
解:(Ⅰ)依题意得:(m-1)2=1,
解得m=0或m=2
当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去
∴m=0.
(Ⅱ)由(Ⅰ)知f(x)=x2,当x∈[1,2]时,f(x),g(x)单调递增,
∴A=[1,4],B=[2-k,4-k],
∵A∪B⊆A,
∴
解得,0≤k≤1
故实数K的取值范围为[0,1]
解得m=0或m=2
当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去
∴m=0.
(Ⅱ)由(Ⅰ)知f(x)=x2,当x∈[1,2]时,f(x),g(x)单调递增,
∴A=[1,4],B=[2-k,4-k],
∵A∪B⊆A,
∴
|
解得,0≤k≤1
故实数K的取值范围为[0,1]
点评:本题主要考查了幂函数的性质定义,以及集合的运算,属于基础题.
练习册系列答案
相关题目
已知函数f(x)是定义在R上的奇函数,f(1)=0,当x>0时,有
>0成立,则不等式f(x)>0的解集是( )
| xf′(x)-f(x) |
| x2 |
| A、(-1,0)∪(1,+∞) |
| B、(-1,0) |
| C、(1,+∞) |
| D、(-∞,-1)∪(1,+∞) |
数列1,2,2,3,3,3,4,4,4,4,…中第100项的值是( )
| A、10 | B、13 | C、14 | D、100 |
已知函数f(x)是R上的增函数,A(0,-2),B(4,2)是其图象上的两点,那么|f(
)|<2的解集是( )
| 1 |
| 2x+1 |
| A、(1,4) |
| B、(1,+∞) |
| C、(-∞,1)∪[4,+∞] |
| D、(-3,+∞) |