题目内容
已知
=(
,cosωx),
=(sinωx,-1),(0<ω<3,x∈R).函数f(x)=
•
,若将函数f(x)的图象向左平移
个单位,则得到y=g(x)的图象,且函数y=g(x)为偶函数.
(Ⅰ)求函数f(x)的解析式及其单调增区间;
(Ⅱ)若f(
)=
,(
<α<
π),求sinα的值.
| a |
| 3 |
| b |
| a |
| b |
| π |
| 3 |
(Ⅰ)求函数f(x)的解析式及其单调增区间;
(Ⅱ)若f(
| α |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| 2 |
| 3 |
考点:平面向量的综合题,三角函数中的恒等变换应用
专题:平面向量及应用
分析:(Ⅰ)由f(x)=
•
=
sinωx-cosωx=2sin(ωx-
),知g(x)=2sin(ωx+
π-
),由g(x)是偶函数,得f(x)=2sin(2x-
),由此能求出函数f(x)的单调增区间.
(Ⅱ)由f(
)=2sin(2•
-
)=2sin(α-
),f(
)=
,得sin(α-
)=
,从而cos(α-
)=
,由此能求出sinα.
| a |
| b |
| 3 |
| π |
| 6 |
| ω |
| 3 |
| π |
| 6 |
| π |
| 6 |
(Ⅱ)由f(
| α |
| 2 |
| α |
| 2 |
| π |
| 6 |
| π |
| 6 |
| α |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
| π |
| 6 |
| ||
| 4 |
解答:
解:(Ⅰ)f(x)=
•
=
sinωx-cosωx=2sin(ωx-
),
∴g(x)=f(x+
)=2sin[ω(x+
)-
]=2sin(ωx+
π-
),
又∵g(x)是偶函数,
∴sin(-ωx+
π-
)=sin(ωx+
π-
),
∴sinωxcos(
π-
)=0对任意x∈R恒成立,
∴
π-
=
+kπ,k∈Z,
整理,得ω=2+3k,k∈Z,
又0<ω<3,∴ω=2,
∴f(x)=2sin(2x-
),
令-
+2kπ≤2x-
≤
+2kπ,k∈Z,
得-
+kπ≤x≤
+kπ,k∈Z,
∴函数f(x)的单调增区间为[-
+kπ,
+kπ],k∈Z.
(Ⅱ)由(Ⅰ)知:
f(
)=2sin(2•
-
)=2sin(α-
),
又f(
)=
,∴sin(α-
)=
,
又
<α<
π,∴0<α-
<
,
∴cos(α-
)=
,
∴sinα=sin[(α-
)+
]
=sin(α-
)cos
+cos(α-
)sin
=
×
+
×
=
.
| a |
| b |
| 3 |
| π |
| 6 |
∴g(x)=f(x+
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| ω |
| 3 |
| π |
| 6 |
又∵g(x)是偶函数,
∴sin(-ωx+
| ω |
| 3 |
| π |
| 6 |
| ω |
| 3 |
| π |
| 6 |
∴sinωxcos(
| ω |
| 3 |
| π |
| 6 |
∴
| ω |
| 3 |
| π |
| 6 |
| π |
| 2 |
整理,得ω=2+3k,k∈Z,
又0<ω<3,∴ω=2,
∴f(x)=2sin(2x-
| π |
| 6 |
令-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
得-
| π |
| 6 |
| π |
| 3 |
∴函数f(x)的单调增区间为[-
| π |
| 6 |
| π |
| 3 |
(Ⅱ)由(Ⅰ)知:
f(
| α |
| 2 |
| α |
| 2 |
| π |
| 6 |
| π |
| 6 |
又f(
| α |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
又
| π |
| 6 |
| 2 |
| 3 |
| π |
| 6 |
| π |
| 2 |
∴cos(α-
| π |
| 6 |
| ||
| 4 |
∴sinα=sin[(α-
| π |
| 6 |
| π |
| 6 |
=sin(α-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 1 |
| 4 |
| ||
| 2 |
| ||
| 4 |
| 1 |
| 2 |
=
| ||||
| 8 |
点评:本题考查函数f(x)的解析式及其单调增区间的求法,考查sinα的值的求法,是中档题,解题时要注意向量的数量积的合理运用.
练习册系列答案
相关题目
根据如下样本数据:
得到的线性回归方程为
=bx+a,则( )
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4 | 2.5 | -1 | -1 | -2 |
| ? |
| y |
| A、a>0,b>0 |
| B、a>0,b<0 |
| C、a<0,b>0 |
| D、a<0,b<0 |