题目内容
若Sk=
+
+…+
+
,则Sk+1-Sk= .
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:依题意,可求得Sk+1=
+
+…+
+
+
+
,于是可得Sk+1-Sk的值.
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
解答:
解:∵Sk=
+
+…+
+
,
∴Sk+1=
+
+…+
+
+
=
+
+…+
+
+
+
,
∴Sk+1-Sk=
+
-
=
-
,
故答案为:
-
.
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
∴Sk+1=
| 1 |
| (k+1)+1 |
| 1 |
| (k+1)+2 |
| 1 |
| 2(k+1)-2 |
| 1 |
| 2(k+1)-1 |
| 1 |
| 2(k+1) |
=
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
∴Sk+1-Sk=
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+1 |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
故答案为:
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
点评:本题考查数列的求和,求得Sk+1=
+
+…+
+
+
+
是关键,考查分析与运算能力,属于中档题.
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
练习册系列答案
相关题目
在底面是菱形的四棱锥P-ABCD中,点E在PD上,且PE:ED=2:1,在棱PC上存在一点F,使BF∥平面AEC,则PF:FC的值为( )
| A、1:1 | B、2:1 |
| C、3:1 | D、3:2 |
| A、0° | B、30° |
| C、60° | D、90° |