题目内容

17.已知函数f(x)=ax+lnx,a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)=$\sqrt{x}$[f(x)-ax],且对任意x≥1,2$\sqrt{x}$•g′(x)-1≥$\frac{λx}{x+1}$恒成立,求实数λ的取值范围.

分析 (Ⅰ)先求出函数的定义域,求出函数f(x)的导函数,在定义域下,讨论a≥0,a<0,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间.
(Ⅱ)先求导,化简对任意x≥1,2$\sqrt{x}$•g′(x)-1≥$\frac{λx}{x+1}$恒成立,得到λ≤(1+$\frac{1}{x}$)(lnx+1),再构造函数,根据导数和函数的单调性和最值得关系即可求出实数λ的取值范围

解答 解:(Ⅰ)f(x)的定义域为(0,+∞),
则f′(x)=$\frac{1}{x}$+a,
当a≥0时,f′(x)>0恒成立,则f(x)的增区间为(0,+∞).无减区间;
当a<0时,令f′(x)>0,解得0<x<-$\frac{1}{a}$;令f′(x)<0,解得x>-$\frac{1}{a}$.
则f(x)的增区间为(0,-$\frac{1}{a}$),减区间为(-$\frac{1}{a}$,+∞).
(Ⅱ)∵g(x)=$\sqrt{x}$[f(x)-ax]=$\sqrt{x}$(ax+lnx-ax)=$\sqrt{x}$lnx,x>0,
∴g′(x)=$\frac{1}{2\sqrt{x}}$lnx+$\frac{1}{\sqrt{x}}$=$\frac{1}{2\sqrt{x}}$(lnx+2),
∴2$\sqrt{x}$•g′(x)-1=lnx+1,
∵对任意x≥1,2$\sqrt{x}$•g′(x)-1≥$\frac{λx}{x+1}$恒成立,
∴lnx+1≥$\frac{λx}{x+1}$恒成立,
∴λ≤(1+$\frac{1}{x}$)(lnx+1),
设h(x)=(1+$\frac{1}{x}$)(lnx+1),
∴h′(x)=$\frac{x-lnx}{{x}^{2}}$,
再令φ(x)=x-lnx,x≥1,
∴φ′(x)=1-$\frac{1}{x}$≥0恒成立,
∴φ(x)在[1,+∞)上单调递增,
∴φ(x)≥φ(1)=1,
∴h′(x)>0恒成立,
∴h(x)在[1,+∞)上单调递增,
∴h(x)min=h(1)=2,
∴λ≤2

点评 本题考查函数的单调区间,考查运用导数求单调区间,考查分类讨论的思想方法,函数的最值问题以及函数恒成立的问题,考查了转化思想属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网