题目内容
9.已知定义在R上的函数f(x)满足f(x+2)=f(x),且f(cosθ)=cos2θ,则f(2017)=( )| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 由题意f(2017)=f(1)=f(cos0),由此利用f(cosθ)=cos2θ,能求出结果.
解答 解:∵定义在R上的函数f(x)满足f(x+2)=f(x),
且f(cosθ)=cos2θ,
∴f(2017)=f(1)=f(cos0)=cos(2×0)=1.
故选:C.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
10.已知函数f(x)=-x2-2x,设a=ln2,b=log${\;}_{\frac{1}{3}}$2,c=3${\;}^{\frac{1}{2}}$,则必有( )
| A. | f(b)>f(a)>f(c) | B. | f(c)>f(a)>f(b) | C. | f(a)>f(b)>f(c) | D. | f(b)>f(c)>f(a) |
11.若函数f(x)满足对任意的两个不相等的正数x1,x2,下列三个式子:f(x1-x2)+f(x2-x1)=0,(x1-x2)(f(x1)-f(x2))<0,f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$都恒成立,则f(x)可能是( )
| A. | f(x)=$\frac{1}{x}$ | B. | f(x)=-x2 | C. | f(x)=-tanx | D. | f(x)=|sinx| |
4.要得到函数$f(x)=sin2x+\sqrt{3}cos2x({x∈R})$的图象,可将y=2sin2x的图象向左平移( )
| A. | $\frac{π}{6}$个单位 | B. | $\frac{π}{3}$个单位 | C. | $\frac{π}{4}$个单位 | D. | $\frac{π}{12}$个单位 |
14.过点P(2,-3)的等轴双曲线的标准方程为( )
| A. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{13}$=1 | C. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{5}$=1 | D. | $\frac{{y}^{2}}{13}$-$\frac{{x}^{2}}{13}$=1 |
18.直线l:$\frac{x}{m}$+$\frac{y}{n}$=1过点A(1,2),则直线l与x、y正半轴围成的三角形的面积的最小值为( )
| A. | 2$\sqrt{2}$ | B. | 3 | C. | $\frac{5\sqrt{2}}{2}$ | D. | 4 |