题目内容

19.如图,在四棱锥A-CDFE中,底面CDFE是直角梯形,CE∥DF,EF⊥EC,$CE=\frac{1}{2}DF$,AF⊥平面CDFE,P为AD中点.
(Ⅰ)证明:CP∥平面AEF;
(Ⅱ)设EF=2,AF=3,FD=4,求点F到平面ACD的距离.

分析 (I)作AF中点G,连结PG、EG,证明CP∥EG.然后利用直线与平面平行的判定定理证明CP∥平面AEF.
(II)作FD的中点Q,连结CQ、FC.求出CF,证明CD⊥AC,设点F到平面ACD的距离为h,利用VF-ACD=VD-ACF.求解即可.

解答 (本小题满分12分)
证明:(I)作AF中点G,连结PG、EG,
∴PG∥DF且$PG=\frac{1}{2}DF$.
∵CE∥DF且$CE=\frac{1}{2}DF$,
∴PG∥EC,PG=EC.
∴四边形PCEG是平行四边形.…(2分)
∴CP∥EG.
∵CP?平面AEF,EG?平面AEF,
∴CP∥平面AEF.…(4分)
(II)作FD的中点Q,连结CQ、FC.
∵FD=4,
∴EC=FQ=2.
又∵EC∥FQ,
∴四边形ECQF是正方形.
∴$CF=\sqrt{E{F^2}+E{C^2}}=2\sqrt{2}$.
∴Rt△CQD中,$CD=\sqrt{C{Q^2}+Q{D^2}}=2\sqrt{2}$.
∵DF=4,CF2+CD2=16.
∴CD⊥CF.
∵AF⊥平面CDEF,CD?平面CDEF,
∴AF⊥CD,AF∩FC=F.
∴CD⊥平面ACF.
∴CD⊥AC.…(8分)
设点F到平面ACD的距离为h,
∴VF-ACD=VD-ACF
∴$\frac{1}{3}•h•{S_{ACD}}=\frac{1}{3}•CD•{S_{ACF}}$.
∴$h=\frac{{CD•\frac{1}{2}•AF•FC}}{{\frac{1}{2}•CD•AC}}=\frac{{3•2\sqrt{2}}}{{\sqrt{A{F^2}+F{C^2}}}}=\frac{{6\sqrt{2}}}{{\sqrt{17}}}=\frac{{6\sqrt{34}}}{17}$.…(12分)

点评 本题考查直线与平面平行的判定定理的应用,等体积法的应用,考查空间点、线、面距离的求法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网