题目内容

14.若x,y∈R,且f(x+y)=f(x)+f(y),则函数f(x)(  )
A.f(0)=0且f(x)为偶函数B.f(0)=0且f(x)为奇函数
C.f(x)为增函数且为奇函数D.f(x)为增函数且为偶函数

分析 利用赋值法,即可得出结论.

解答 解:由题意,f(0+0)=f(0)+f(0),∴f(0)=0,
f(-x+x)=f(-x)+f(x)=0,∴f(x)为奇函数,
故选B.

点评 本题考查奇函数的定义与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网