题目内容

已知m>0,n>0,
1
m
+
4
n
=1,则(m+1)(n+4)的最小值为(  )
A、49B、7C、36D、6
考点:基本不等式
专题:不等式的解法及应用
分析:由已知变形可得∴(m+1)(n+4)=20+
2n
m
+
32m
n
,由基本不等式可得.
解答: 解:∵m>0,n>0,
1
m
+
4
n
=1,
∴(m+1)(n+4)=mn+4m+n+4
=mn(
1
m
+
4
n
)+4m+n+4
=n+4m+4m+n+4
=(8m+2n)(
1
m
+
4
n
)+4
=20+
2n
m
+
32m
n

≥20+2
2n
m
32m
n
=36
当且仅当
2n
m
=
32m
n
即m=2,n=8时取等号,
∴(m+1)(n+4)的最小值为36
故选:C.
点评:本题考查基本不等式,凑出基本不等式的形式是解决问题的关键,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网