题目内容

已知奇函数f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角且α>β,则下列结论正确的是(  )
A、f(cos α)>f(cos β)
B、f(sin α)>f(sin β)
C、f(sin α)>f(cos β)
D、f(sin α)<f(cos β)
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:根据函数奇偶性和单调性之间的关系,结合三角函数的性质即可得到结论
解答: 解:∵奇函数y=f(x)在[-1,0]上为单调递减函数
∴f(x)在[0,1]上为单调递减函数,
∴f(x)在[-1,1]上为单调递减函数,
又α、β为锐角三角形的两内角
∴α+β>
π
2

∴α>
π
2

∴sinα>sin(
π
2
-β)=cosβ>0
∴f(sinα)<f(cosβ)
故选:D.
点评:本题主要考查函数奇偶性和单调性的应用,以及三角函数的性质的应用,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网