题目内容

在△ABC中,已知tan
A+B
2
=sinC,给出以下四个论断:①tanA•cotB=1②0<sinA+sinB≤
2
③sin2A+cos2B=1④cos2A+cos2B=sin2C,其中正确的是
 
考点:两角和与差的正切函数
专题:三角函数的求值
分析:已知式子变形可得A+B=90°,逐个选项判定即可.
解答: 解:∵tan
A+B
2
=sinC
sin
A+B
2
cos
A+B
2
=2sin
A+B
2
cos
A+B
2

整理求得cos(A+B)=0,∴A+B=90°.
∴tanA•cotB=tanA•tanA不一定等于1,①不正确.
∴sinA+sinB=sinA+cosA=
2
sin(A+45°)
∵45°<A+45°<135°,
2
2
<sin(A+45°)≤1,
∴1<sinA+sinB≤
2
,②不正确;
cos2A+cos2B=cos2A+sin2A=1,
sin2C=sin290°=1,
∴cos2A+cos2B=sin2C,④正确.
sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.
综上知④正确
故答案为:④
点评:本题考查两角和与差的三角函数公式,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网